Конспект лекций для студентов специальности ТКИ. — М: РУТ (МИИТ), 2018. — 66 с. Конспект лекций содержит основные понятия и теоретические положения теории математического программирования. Конспект лекций предназначен студентам 3 курса ИТТСУ РУТ (МИИТ) специальности ТКИ. Основные понятия математического программирования. Задачи математического программирования. Примеры задач...
Выходные данные не указаны. Лектор Зеликин М.И. — 61 с. Данный материал представляет собой аккуратно набранный в Adobe Acrobat Reader конспект лекций проф. Зеликина по вариационному исчислению и оптимальному управлению, прочитанных по следующей программе: Уравнение Эйлера для задачи классического вариационного исчисления Уравнение геодезических на римановом многообразии...
Харківська національна академія міського господарства, Харків, Охріменко В.М.,2011. - 122 с.
Лінійне програмування. Транспортна задача. Економічна інтерпретація й аналіз оптимальних планів лінійних економіко-математичних моделей.Нелінійне програмування. Динамічне програмування. Прийняття рішень в умовах невизначеності й ризику. Елементи теорії ігор.
Лектор А.В. Плясунов, 10 января 2006. — 109с.
Цели лекционного курса.
Изучение ряда базовых алгоритмов, которые используются для решения конечномерных задач оптимизации.
Получение (приобретение) теоретических и концептуальных представлений, достаточных для понимания, оценки этих алгоритмов и, если необходимо, создания новых.
Содержание.
Теория экстремальных задач ....
Курс лекций. МГУ, механико-математический факультет, 7 семестр. — 61 с. Дифференцируемость, строгая дифференцируемость и субдифференцируемость. Конечномерные теоремы отделимости. Модифицированный метод Ньютона и разрешимость конечномерной системы нелинейных уравнений. Теорема Ферма для конечномерных гладких задач без ограничений и правило множителей Лагранжа для конечномерных...
Лекції включають такі теми: 30 стр.
Предмет теорії оптимізації. Приклади постановок задач оптимізації.
Основи класичної теорії експериментальних задач.
Чисельні методи одновимірної оптимізації:
Метод пасивного пошуку;
Метод ділення відрізку навпіл;
Метод Фібоначчі;
Метод "золотого" перетину.
Чисельні методи розв'язання задач нелінійного програмування.
Постановка задач...
Мехмат МГУ, 2020. — 51с. Примеры экстремальных задач. Простейшая задача классического вариационного исчисления. Элементы функционального анализа. Основы дифференциального исчисления в нормированных пространствах. Дифференцируемость некоторых конкретных отображений. Теорема Люстерника. Принцип Лагранжа для задач с ограничением типа равенств. Принцип Лагранжа для выпуклых задач....
Москва: 2017. — 27 с. Курс лекций по теории оптимизации для студентов. Содержание: Введение. Математическое программирование. Общая формулировка оптимизационной задачи. Минимизирующие последовательности. Многокритериальная оптимизация. Локальные и глобальные минимумы. Гладкая оптимизация. Условный экстремум. Метод множителей Лагранжа. Выпуклое программирование. Численные методы в...
Комментарии
Помогите люди добрые :(