Битюцкий В.П., Соколов С.С. Основы дискретной математики. Часть 1. Учебное пособие
Файл формата
pdf
размером 741,84 КБ
Добавлен пользователем Graph_in, дата добавления неизвестна
Описание отредактировано
Екб., УГТУ-УПИ, 2005. Приводятся основные понятия и утверждения из теории множеств, теории отношений, важнейшие операции над графами, используемые в различных технических приложениях, основные понятия алгебры логики, теории групп и полугрупп. Материал сопровождается поясняющими примерами, содержит задачи, решение которых позволит глубже усвоить учебный материал. Пособие предназначено для студентов специальностей: 230101 - Вычислительные машины, комплексы, системы и сети, 071900 - Информационные системы в технике и технологиях.
Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
Методическое пособие. — Саров: Саровский государственный физико-технический институт (СарФТИ), 2001. — 60 с. Сборник задач и упражнений по курсу Дискретная математика. В пособии приведена теория, примеры решения задач и задачи для самостоятельного решения по разделу «Элементы теории множеств и теории графов». Элементы теории множеств. Теоретико-множественные операции....
Учебник. — Москва: Финансы и статистика, 2006. — 368 с.— ISBN 5-279-03045-7. Рассматриваются основные темы дискретной математики и математической логики: теория множеств, элементы комбинаторики, теория графов, теория переключательных функций и автоматов, теория кодирования, формальная логика, логические исчисления, формальные теории и теория алгоритмов, элементы теории нечетких...
М.: Вузовская книга, 2000. - 280 с. Учебное пособие по дискретной математике. Содержит разделы: алгебра высказываний, алгебра предикатов и множеств, отображения, элементы комбинаторики, отношения, булевы функции, элементы теории алгоритмов и графов. Отдельный раздел составляют задачи и упражнения. Для студентов и преподавателей вузов, инженеров-системотехников, программистов
Решебник содержит решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции определяется является ли клауза теоремой и др.
М.: Московский государственный институт электроники и математики (Технический университет), 1999. — 116 с. Описаны множества, перечисления, введение в теорию графов: Эйлеровы графы, Гамильтоновы графы, кратчайшие пути, деревья, планарные графы, раскраски графов, потоки в сетях. True PDF Введение Введение в комбинаторику Множества. отображения Множества Отображения Алгебра...
4-е изд., стер. — М.: Высшая школа, 2003. — 384 с. Книга является введением в дискретную математику - раздел прикладной математики, бурно развивающийся в последние годы и являющийся базой для математической кибернетики. Она написана на основе курса лекций, который автор читал в течение ряда лет на факультете вычислительной математики и кибернетики Московского государственного...